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Brightness temperature (BT), which is remotely sensed by the space-borne microwave radiometer, is widely
used in snow covermonitoring for its long time series imaging capabilities in all-weather conditions. Traditional
linear fitting and stand-alonemethods are usually uncertainwith respect to the spatial distribution and temporal
variation of derived snow cover, as they rarely consider local conditions and scene characteristics but fit the
model with static empirical coefficients. In this paper, a novel method utilizing daily ground in situ observations
is proposed and evaluated, with the purpose for accurate estimation of long-term daily snow cover. To solve the
challenge that ground snow-free records are insufficient, a one-class classifier, namely the Presence and Back-
ground Learning (PBL) algorithm, is employed to identify daily global snow cover. Benefiting from daily ground
in situ observations on a global scale, the proposedmethod is temporally and spatially dynamic such that estima-
tion errors are globally independent during the entire study period. The proposed method is applied to the esti-
mation of global daily snow cover from1987 to 2010; the results are validated by ground in situ observations and
compared with available optical-based and microwave-based snow cover products. Promising accuracy and
model stability are achieved in daily, monthly and yearly validations as compared against ground observations
(global omission error b0.13, overall accuracy N0.82 in China region, and keep stable in monthly and yearly av-
erages). The comparison against theMODIS daily snow cover product (MOD10C1) shows good agreement under
cloud-free conditions (Cohen's kappa = 0.715). The comparison against the NOAA daily Interactive Multisensor
Snowand IceMapping System (IMS) dataset suggests promising agreement in the Northern Hemisphere. Anoth-
er comparison against the AMSR-E daily SWE dataset (AE_DySno) demonstrates the efficiency of the proposed
method regarding to the overestimation problem in thin snow cover region.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The seasonal snow cover of the globe, especially in the Northern
Hemisphere, has a significant impact on climate, water cycles and bio-
geochemical cycling, as the surface albedo of the northern areas in win-
ter season ismainly controlled by snow covered area. As snow cover can
affect climate dynamics (Cohen & Entekhabi, 1999), the capacity for the
accurate estimation of global snow cover and the volumetric storage of
water in snowpack limits our ability tomonitor climate change and test
climate model simulations. Traditional snow cover monitoring was
mainly based on isolated ground observations frommeteorological sta-
tions. However, sparse point observation networks can hardly provide
the overall picture on regional and global scales due to their low spatial
densities or even complete absence in inaccessible regions (Walker,
Derksen, & Goodison, 2005). Remote sensing has been used to monitor
continental-scale seasonal snow cover for more than two decades
(Allan & David, 1999). Various studies have shown that snow cover
can be detected using both optical sensors (Allen, Durkee, & Wash,
1990; Hall, Riggs, Salomonson, Digirolamo, & Bayr, 2002; Hall, Riggs, &
Salomonson, 1995) and space-borne positive microwave radiometers
(Klein & Barnett, 2003; Walker & Goodison, 1993).

Since the 1980s, a number of algorithms have been developed for
snow cover monitoring using optical sensors, such as themulti-spectral
thresholds classification method (Allen et al., 1990; Romanov, Gutman,
& Csiszar, 2000), linear spectral unmixing for subpixel snow covermap-
ping (Romanov, Tarpley, Gutman, & Carroll, 2003; Rosenthal & Dozier,
1996), and the Normalized Difference Snow Index (NDSI) algorithm
(Hall et al., 2002; Hall et al., 1995). However, snow cover observations
through optical sensors are sensitive to local weather conditions, espe-
cially when cloud cover and rainfall are present. Moreover, sunlight is
required to receive the reflected signal from snowpack to the optical
sensors. Thus it is difficult to find consecutive daily images that are
cloud-free or have low cloud cover percentage. Obscuration by cloud
cover and inaccessibility in dark regions greatly limit the applicability
of optical-based snow cover products in regional and global applica-
tions. (Klein & Barnett, 2003; Wang, Xie, Liang, & Huang, 2009).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2016.05.010&domain=pdf
http://dx.doi.org/10.1016/j.rse.2016.05.010
http://dx.doi.org/10.1016/j.rse.2016.05.010
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse
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Passivemicrowave observation from space-borne radiometers is an-
other data source for the retrieval of global/regional snow cover or snow
water equivalent (SWE) because of its wide swath, all-weather imaging
capabilities, day and night time capability, multi-frequency response to
the presence of snow pack, and a long archive history dating back to
1978. Progress in retrieving snow cover or SWE has been made since
the launch of the Scanning Multi-Channel Microwave Radiometer
(SSMR) in 1978 and the Special Sensor Microwave Imager (SSM/I) in
1987. Although these two microwave sensors are not designed for
snow detection, they have been found to be effective in detecting
snow cover and SWE (Chang, Foster, Hall, Rango, & Hartline, 1982;
Chang, Foster, & Hall, 1987; Pulliainen, 2006; Walker & Goodison,
1993). The Advanced Microwave Scanning Radiometer - EOS (AMSR-
E), which was launched in 2002 and stopped in 2011, and its successor
the Advanced Microwave Scanning Radiometer 2 (AMSR2), which was
launched in 2012, provide othermicrowave data sourceswith relatively
higher spatial resolution for the mapping of the snow cover and SWE
(Kelly, Chang, Tsang, & Foster, 2003; Tedesco, Kelly, Foster, & Chang,
2004).

The detection of snow cover and SWE frommicrowave observations
is based on the fact that the presence of snowpack on land surface
causes a difference of microwave scattering and can be detected by
space-borne instruments. On snow covered surfaces, brightness tem-
perature (BT), a measure of microwave emission, tends to decrease
with increasing snowdepth since larger number of snow crystals scatter
more microwave signal. Traditional snow cover retrieval methods
model the snow depth (or SWE) as a function of the difference between
of multi-frequency BTs. The algorithm proposed by Chang et al. (Chang
et al., 1987) is a typical example. Based on this work, a number of stud-
ies were carried out to improve the accuracy and stability of snow cover
and snowdepth (or SWE) retrievals by taking into account the effects of
grain size, snow density and vegetation canopy, etc. (Foster, Chang, &
Hall, 1997; Kelly, Chang, Foster, & Hall, 2001; Pulliainen, Grandell, &
Hallikainen, 1999).

Although previous studies achieved acceptable accuracies for some
regions and seasons, the snow cover and SWE estimates based on mi-
crowave data are found to be spatial and temporal bias (Pulliainen,
2006). Moreover, most microwave snow cover retrievals are reported
to underestimate the snow cover in regions of low elevation and
overestimate the snow cover in mountainous areas (Foster et al.,
1997; Koenig & Forster, 2004). These problems probably result
from insufficient considerations of spatial and temporal heterogene-
ity of snowpack and land cover in these stand-alone algorithms. Be-
sides, the empirical regression coefficients in these models are often
calibrated by insufficient ground observations of snow information,
i.e., dozens of sparse observations in short time period. The accuracy
of such snow cover retrievals is closely dependent on local condi-
tions and scene characteristics, crippling the applicability of these
models for producing a promising snow cover datasets for a long-
term period.

One potential solution to overcome these challenges is to integrate a
global long-term series of ground snow observations with microwave-
based snow cover modeling. The Global Surface Summary of Day
(GSOD) dataset, which is provided by the National Climatic Data Center
(NCDC), is a potential data source to provide sufficient ground snow
cover observations. The GSOD dataset is contributed by more than
29,000 meteorological stations across the globe (see Fig. 3). It provides
various meteorological elements, including snow depth information,
dating back to 1929. Currently, approximately 9000 stations are func-
tional in acquiring ground snow cover information. However, snow-
free records in the GSODdataset aremixedwithmissing observation re-
cords, i.e., we cannot identify whether a record is snow-free or an unre-
ported snow presence.Without observed snow-free records, traditional
binary classifier-basedmethods of snow cover discrimination (e.g., sup-
port vector machine, maximum likelihood estimation) are not applica-
ble to the modeling of snow cover over selected attributes.
The purpose of this study is to develop and test a one-class method,
namely the Presence and Background Learning (PBL) algorithm, to esti-
mate the global snow cover even though there are no reliable reports of
snow-free on the ground. By integrating long-term daily ground snow
cover information with space-borne microwave BT measurements, the
proposed method is different from previous static stand-alone algo-
rithms, but expected to be temporally and spatially dynamic. The accu-
racy and variation of our model estimation are independent from local
conditions and scene characteristics such that the method is applicable
for accurate long-term snow cover estimation under all-weather condi-
tions. The proposed method involves two steps. First, space-borne mi-
crowave BT measurements and massive one-class ground in situ snow
cover observations are combined to train the PBL model to estimate
the probability of snow cover presence. Second, an appropriate thresh-
old is automatically selected to segment the estimated probability into
binary class: snow-free and snow cover. Since the model utilized
ground observations and microwave measurements on a daily basis,
the proposed model should be temporally and spatially dynamic such
that estimation errors are independent from local conditions and
scene characteristics.
2. Datasets used in the study

2.1. The SSM/I Brightness Temperature (BT) dataset

The SSM/I brightness temperature dataset (Armstrong, Knowles,
Brodzik, & Hardman, 1994) used in this study is collected from the Spe-
cial Sensor Microwave/Imager (SSM/I) sensors, which are boarded on
the Defense Meteorological Satellite Program (DMSP) series satellites.
The SSM/I sensor is amulti-frequency (19-, 22-, 37- and 85-GHz)micro-
wave radiometric system. Both vertical and horizontal polarization are
measured for all but not 22-GHz, forwhich only the vertical polarization
is measured. The foot print varies with channel energy, ranging from
69 × 43 km2 at 19-GHz to 15 × 13 km2 at 85-GHz (Hollinger, 1991).
The SSM/I BT data are gridded into NSIDC Equal-Area Scalable Earth
grids (EASE-Grids) for each day and projected into the cylindrical
equal-area projection (Armstrong & Brodzik, 1995). The spatial resolu-
tion is 25 × 25 km2 for all channels, and the 85-GHz channel is addition-
ally available at 12.5 × 12.5 km resolution.
2.2. The Global Surface Summary of Day (GSOD) product

The Global Surface Summary of Day (GSOD) product is provided by
theNational Climatic Data Center (NCDC, https://data.noaa.gov/dataset/
global-surface-summary-of-the-day-gsod), and is based on data ex-
changed under the World Meteorological Organization (WMO) World
Weather Watch Program according to WMO Resolution 40 (Cg-XII). It
is comprised of a dozen daily averaged weather parameters computed
from global hourly station data. Snow depth is one of the 14 daily
weather elements included in this dataset. The dataset is available
since 1929, with around 29,000 meteorological stations covering over
the globe. Currently more than 9000 stations are typically functional.
The GSOD data provides snow depth information in inches to tenths;
however, most stations do not report 0 values on days with no snow
cover on the ground. Instead, the value of 999.9 will be archived in the
dataset, which is the same value to denote a missing observation. Thus
we cannot determine the occurrence of snow if a particular station re-
ports a 999.9 value. This becomes the challenge of using the GSOD
dataset as most records contain only presence data (observed snow
cover) but lacking absence information (observed snow absence). Tra-
ditional two-class classifiers, such as support vectormachine,maximum
likelihood estimation, are not applicable due to the deficiency of ab-
sence data. The one-class PBL model investigated in this study is an at-
tempt to overcome this challenge.

https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod
https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod


Table 1
Linear combinations of BTs and their corresponding materials considered in this study.

Linear combinations Corresponding materials

T19V-T37V Scattering signature, frozen surface
T22V-T85V Scattering signature, precipitation cloud
T19V-T19H Cold desert, shadow snow, melting snow
37V-T37H Melting snow
T37V-T85V Cold desert
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2.3. The China Meteorological Station Observation (CMSO) dataset

For various reasons, stations located in China are all labeled as 999.9
in the snow depth field throughout the entire study period. Thus we
used the China Meteorological Station Observation (CMSO, acquired
from the China Meteorological Data Sharing Service System http://cdc.
nmic.cn/home.do) dataset as Supplementary material to fill themissing
data in the China region. The dataset contains 747 stations scattered
throughout China, with around 300 stations typically functional on
snow depth observation. Different from the GSOD dataset, the observed
Fig. 1. A brief flow chart of the imple
absence of snow cover is archived in the CMSO dataset, which means
both the presence and absence data are available. However, it is not ap-
propriate to estimate global snow cover by training a model from the
observed absence data only available in China region. Thus the observed
absence data in this dataset is only used for validation.

3. Theoretical basis for snow cover retrieval

The ability to identify snow cover from the observation of microwave
electromagnetic spectrum is based on the fact that a difference of micro-
wave scattering can be observedwhen snowpack is present in the ground
surface. Microwave BT tends to decreasewith increasing snow depth and
snow density since the greater number of snow crystals provides in-
creased scattering of the microwave signal. In this paper, we use the dif-
ference between BTs at low (19 GHz) and high (37 GHz) frequency to
detect the source of scattering signals. A positive difference is inherent
to a scattering surface and might possibly be attributed to snowpack
(Chang et al., 1982). A greater observed difference implies stronger scat-
tering signal, and a greater snow volume is assumed to be present. How-
ever, the observed scattering signalsmight also be causedbyother surface
mentation of the PBL algorithm.

http://cdc.nmic.cn/home.do
http://cdc.nmic.cn/home.do


Fig. 2. Schematic drawing of the affiliation among different samples in the PBL model.
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materials such as cold deserts and frozen ground. In addition, precipitat-
ing clouds can produce scattering signals in high frequency measure-
ments. Previous researches used the liner combination of BTs to
eliminate some of these interferential surface materials. For example,
Grody (Grody, 1991; Grody & Basist, 1996) used an empirical combina-
tion T19V−T37V≤2K∩T22V−T85V≤6K to remove the frozen ground.
Yu (Yu et al., 2011) used the condition T18V−T18H≥18K∩T36V−
T85V≤10K to detect cold desert area. Walker and Goodison (Walker &
Goodison, 1993) combined T36V − T36H N 10Kand surface
temperature N 270 K to identify the wet snow.

In this study we consider the following linear combinations listed in
Table 1. Unlike previous studies, we did not use empirical thresholds to
manually remove these interferential materials. Instead, we include
them inour proposedmodel inwhich theBT linear combinations and sur-
face materials are trained automatically. In addition, BTs at 19–37- and
85-GHz at available polarizations are also used to train the model, with
the purpose to find out as many underlying attributes as possible for
distinguishing snow cover from other interferential materials. As long as
ground observations (should be “snow free”) in interferential regions
are utilized in the model training process, the trained algorithm based
onArtificial NeuralNetwork (ANN)will automatically learn the difference
between the snowpack and the interferential surface materials, and label
these interferential surfaces as “snow free”. The advantage of suchway to
eliminate precipitating clouds and frozen soil/rocks is that we can avoid
human interference, and let the model train and predict the snow cover
pattern automatically and adaptively. By using the proposed method,
the estimated probability of snow cover in areas of precipitating clouds
and frozen soil/rocks would be relatively small. Moreover, the model is
designed to be calibratedbydaily groundobservations, bywhich these in-
terference surfaces will not be classified as snow cover, and therefore the
estimated pattern of snow cover needs no post-eliminations.

4. One-class snow cover retrieval model

4.1. Estimation of snow cover probability based on PBL

The Presence and Background Learning algorithm (Li, Guo, & Elkan,
2011) is an effective tool in ecological studies for estimating the
Table 2
Confusion metrics from presence-absence data (left) and presence-background data (right).

sc = 1

Prediction scpre = 1 TP
(true positive)

scpre = 0 FN
(false negative)
probability of a species' occurrence at given environmental covariates.
The major feature of PBL is that it can accurately predict and calibrate
the probability of target's occurrence without negative samples in the
training set. This characteristic of the PBL model enables us to identify
the snow cover extent considering that the snow-free observation is
not available in the GSOD dataset. The main purpose of this section is
to model the probability of snow cover occurrence on selected attri-
butes (microwave BTs and their linear combinations) using the PBL
model. A brief flow chart is provided in Fig. 1 to describe the implemen-
tation of the algorithm, including data preparation, probability predic-
tion, and segmentation.

Before the methodology description, a few definitions need to be
clarified in our snow cover estimation. We denote the presence of
snow cover as sc = 1 and the absence as sc = 0. However, samples in
the GSOD dataset which record snow cover occurrence in stations are
slightly different from sc = 1. A more appropriate definition for such
samples is observed presence, denoted as obssc = 1. The observed pres-
ence samples obssc = 1 are a subset of all presence samples sc = 1
that are happened to be observed by the instruments. Moreover, re-
cords that are labeled as 999.9 in the GSOD dataset are defined as back-
ground sample, denoted as obssc = 0. Note that a background sample is
either an unknown presence or an unknown absence. If obssc = 1,
then we know for sure that sc = 1; however, if obssc = 0, we do not
know whether sc = 1 or sc = 0. A schematic drawing of the affiliation
among different samples is showed in Fig. 2:

Given the above definitions, the probability of snow cover occur-
rence can be expressed as a conditional probability:

psc ¼ P sc ¼ 1 BTsjð Þ: ð1Þ

The BTs in Eq. (1) denotes the attributes (brightness temperature
and their linear combinations) considered in the modeling. Unfortu-
nately, the probability psc cannot be directly derived from the current
available dataset using traditional methods because of the deficiency
of absence snow cover samples. However, by training a binary classifier
using the observed presence data (BTs, obssc = 1) and the background
data (BTs, obssc = 0), another model can be established to estimate
the probability of observed presence of snow cover on a specific site:

pobs ¼ P obssc ¼ 1 BTs; η ¼ 1jð Þ: ð2Þ

Note that η = 1 denotes the presence-background scenario. The
strategy of the PBL algorithm is to first model the probability of an
observed presence pobs and then adjust it into the desired one psc
through a series of probability transformations. To achieve this, the
sampling method in the PBL algorithm is slightly different from
that of the traditional presence-absence scenario. The case-control
sampling method is applied to randomly select the study samples:
it is assumed that observed presences (BTs, obssc = 1) are randomly
sampled from all presence records (BTs, sc = 1), and background
data (BTs, obssc = 0) are randomly sampled separately from the en-
tire study region Ω.

Let p1 be the number of observed presence data samples (BTs,
obssc = 1) in the training set. Moreover, we assume the background
data samples (BTs, obssc = 0) in the training set contain p2 presences
sc = 1 and n2 absences sc = 0, which are in proportion to their overall
Reference

sc = 0 scobs = 1 scobs = 0

FP
(false positive)

TP′
(true positive)

FP′
(false positive)

TN
(true negative)

FN′
(false negative)

TN′
(true negative)



Fig. 3. Spatial distribution of the meteorological stations contributed to the GSOD dataset.
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population prevalence in the entire study region. Because of the case-
control sampling method, a connection between the presence of snow
cover psc in Eq. (1) and the observed presence of snow cover pobs in
Eq. (2) can be built and expressed as (Li et al., 2011):

psc ¼
p2
p1

� pobs
1−pobs

: ð3Þ

According to Eq. (3), the probability of the presence of snow cover
psc is proportional to pobs/(1 − pobs), and the scale factor p2/p1 is the
ratio of the number of presences among the background sample and
the number of observed presence samples. In order to estimate p2/p1,
we define a constant casc = p1/(p1 + p2), and then we have p2/p1 =
(1− c)/c. Thus, if we can estimate this constant c, the probability of ob-
served presence of snow cover pobs can be adjusted into the probability
of the presence of snow cover psc.

To estimate the constant c, the PBLmodel introduces another defini-
tion of prototypical presence. It means that, in the ecological studies, the
habitat is maximally suitable for a specific species, so the species has a
chance of 100% to survive in the corresponding habitat. In the context
of snow cover estimation, we analogously assume that some stations
in the study region have 100% estimated probability to be snow cover
regarding a set of given BTs. These station observations are defined as
prototypical presence of snow cover. Let O be a subset of samples that
are located at stations of prototypical presence. Then we have

Pðsc ¼ 1 BTsÞ ¼ 1j BTs∈O: ð4Þ

According to the definition of conditional probability, it can be
proved that

pobs ¼ P obssc ¼ 1 BTs;η ¼ 1jð Þ
¼ p1

p1 þ p2
BTs∈O

¼ c

ð5Þ

The details of the derivation process in Eq. (5) can be found in the
work of Li et al. (Li et al., 2011). Eq. (5) implies that, as to samples be-
longing to O, any predicted probabilities of the observed presence of
snow cover pobs can be used to estimate the constant c. In practice, a
more reliable estimator of constant c is the average value of all samples
belonging to O:

c ¼ 1
n

X
BTs∈O

P obssc ¼ 1 BTs;η ¼ 1jð Þ ð6Þ

where n is the population of O.
So far, we can build up a model to estimate the probability of snow

cover pobs indirectly from the presence and background data through
3 phases: Phase #1, a model is trained to estimate the probability of ob-
served presence of snow cover from observed presence samples (BTs,
obssc = 1) and background data (BTs, obssc = 0). Phase #2, a constant
c is estimated according to Eq. (6) from the observations of prototypical
presence stations in O. Phase #3, the trained model psc=P(sc=1|BTs)
is adjusted into a desire model using the following equation:

psc ¼
1−c
c

� pobs
1−pobs

: ð7Þ

In phase #1, the training process can be implemented by traditional
binary classifier (e.g. neural networks, logistic regression, generalized
linear and additive models, and support vector machines). Studies
have shown that artificial neural networks (ANN) are capable of esti-
mating posterior probability and fit different types of models effectively
(Richard & Lippmann, 1991). Thus we used a back-propagation (BP)
neural network (Hecht-Nielsen, 1989) to model the probability of ob-
served presence of snow cover for observed presence and background
samples. In phase #2, estimating constant c needs to determine the pro-
totypical presence sample set O beforehand. In practice, the top percen-
tile of the estimated probability of observed presence pobs=P(obssc=
1|BTs, η=1) in phase #1 are regarded as prototypical presence. For ex-
ample, Li (Li et al., 2011) used the top 50% of the observed presences as
prototypical presencemodeling the probability of species occurrence. In
our snow cover estimationmodel, we find that 50% percentile is reason-
able in determining the prototypical presence sample set O. After phase
#1 and phase #2, the desired probability psc can be estimated according
to Eq. (7).



Fig. 4. Spatial distribution of stations with observations of snow cover presence on Jan. 6th, 2006, (up) Eurasia, (down) North America. Larger circle indicates deeper snow depth.
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4.2. Probability segmentation using modified F-score

The original outputs of the PBL model is continuous probability of
snow cover occurrence. It is necessary to select an appropriate threshold
by which continuous probabilities will be classified into binary class:
snow cover and snow-free. The objective of the threshold selection is
to find a value that can maximize the classification accuracy over an in-
dependent validation dataset (Liu, Berry, Dawson, & Pearson, 2005).

Generally, classification results are compared against an indepen-
dent validation set, and then a binary confusion matrix is created to
cross-tabulate the classified and observed positive-negative labels
(Table 2 left). Two types of errors can be estimated from the confusion
matrix: commission and omission errors. The commission error indi-
cates false positive (FP), the number of absence samples predicted as
presences, whereas the omission error indicates false negative (FN),
the number of presence samples predicted as absences. Combinations
of commission and omission errors, such as the overall accuracy
(Congalton, 1991), kappa coefficient (Cohen, 1960) and F-measure
(Rijsbergen, 1979) have been shown to be effective in quantifying the
accuracy of classification result. However, all of these metrics require
both presence and absence data, by which the commission error and
omission error can be estimated in advance. Thus the above-mentioned
accuracy metrics are difficult to be applied to our one-class snow cover
classification.

In order to modify the traditional accuracymetric andmake it appli-
cable for presence-background scenario, a new confusion matrix is cre-
ated analogously to the original one, as shown in (Table 2 right). Based
on this new confusion matrix, the modified expression of F-measure (Li
& Guo, 2013), which is defined in Eq. (8), is applied for the assessment
of snow cover estimation.

Fcpb ¼ 2� TP0

TP0 þ FN0 þ c0 � FP0
ð8Þ



Fig. 5. Estimatedprobability of snowcover occurrence on Jan. 6th 2006, overlappedwith in situ groundobservations fromone-class GSODdataset and binary-class CMSOdataset (China region).
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c0 ¼ p1
π p2 þ n2ð Þ : ð9Þ

In Eq. (9), π is the snow cover prevalence defined as π = P(sc =
1)= p2/(p2 + n2). Note that Fcpb is an unbiased estimation of the tradi-
tional F-measure, and it does not require observed absence data. Howev-
er, prior information on snow cover prevalence π needs to be acquired
beforehand. A straightforward way to get rid of prevalence information
to remove the constant c' from Eq. (8), and estimate an approximation
of F-measure that only requires presence and background data, i.e.,

Fpb ¼
2� TP0

TP0 þ FN0 þ FP0
: ð10Þ

In the rest of the paper, we use F to denote the traditional F-measure
from the presence-absence data, and use Fcpb to denote the F-measure
estimated from presence-background data using Eq. (8), and use Fpb
to denote the approximation of F-measure based on presence-back-
ground data using Eq. (8). Note that both F and Fcpb are estimating the
same accuracy, and Fcpb can be regarded as a prevalence-calibrated Fpb
based on presence-background data.

According to the definition of Fpb and its relation to Fcpb, the range of
Fpb is determined by the constant c' defined in Eq. (9), i.e.,

0≤ Fpb≤
2� c0

1þ c0
: ð11Þ

Even though the upper bound of Fpb depends on the prevalence of
snow cover in the study region and the prevalence is usually difficult
to acquire, it is useful in practice in terms of rankingmodels by accuracy
and threshold selection. Experiments have demonstrated that Fpb is an
effective proxy of F (or Fcpb) and shows a promising ability to assess
the accuracy of binary classification without observed absence data (Li



Table 3
Summary of the training performance of the BP-neural network using different sample populations.

Sampling method Population of observed presence Population of background data Training MSE and Var
(75% samples)

Test MSE and Var
(25% samples)

#1 one day
(Jan 6th, 2006)

500 1500 0.267 (0.039) 0.291 (0.042)

#2 one week
(Jan 1st–7th, 2006)

1000 3000 0.201 (0.026) 0.226 (0.032)

#3 half a month
(Jan 1st–15th, 2006)

2500 7500 0.172 (0.015) 0.194 (0.019)

#4 one month
(Jan 1st–31st, 2006)

5000 15,000 0.153 (0.006) 0.161 (0.009)

Fig. 6. Standard deviation of 10-time probability predictions on Jan. 6th, 2006, overlapped with ground in situ observations. on the embedded plot on the lower left corner presents the
histogram of STD of 10-time probability predictions corresponding to the spatial distribution. All plots share the same color ramp.
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Fig. 7. The variation of Fpb over different threshold selections for segmenting the estimated
probability of snow cover occurrence on Jan. 6th, 2006. When we select 0.480 as the
segmentation threshold, Fpb reaches its maximum at 0.3321.
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&Guo, 2013, 2014). As to the continuous probability estimated from the
PBLmodel, we can use Fpb to compare the binary classification accuracy
resulting from different thresholds, and select the best one that can
maximize Fpb on an independent validation dataset.

5. Model implementation

5.1. Preprocess of input data

In this study, we use SSM/I BTs and their linear combinations as at-
tributes and use the GSOD and CMOS datasets as snow cover labels to
train the one-class snow cover estimationmodel. In order to implement
the proposed model, preprocesses are needed to re-label the snow
depth records inGSODandCMOS datasets into binary classes: ‘observed
snow cover presence label’ and ‘background label’. Considering that mi-
crowave signals response to thinner snow parks at 37GHz are negligible
(Kelly et al., 2003), only stations recording N30 mm snow depth are
marked as ‘observed snow cover presence label’. The observed presence
data in the training set are randomly sampled from these stations with
observed snow cover label. Note that the background data are randomly
sampled from the entire study region, and equivalently can be sample
from all stations in the GSOD dataset. All the sampled background
data are labeled as “background label” no matter what the original
snow depth record is. Similar to previous studies (Derksen, Walker,
LeDrew, & Goodison, 2003; Kelly et al., 2003), an assumption is made
that snow cover estimated in each SSM/I pixel (25 × 25 km) is equiva-
lent in scale and corresponding to the point observation on the ground.
Thus the comparison is on a pixel-wise basis during the sampling pro-
cess. Previous studies have shown that the BTs data acquired during
the afternoon overpass times (descending orbits of the SSM/I sensor)
could result in the underestimation of SWE (Derksen, Ledrew, Walker,
& Goodison, 2000). Therefore, only BTs acquired from the morning
overpass times (ascending orbits of the SSM/I sensor) are used in this
study.

5.2. Case-control sampling

In the PBL snow cover estimation model, the training set consists of
‘observed snow cover presence’ and ‘background data’. As mentioned
above, these two portions are sampled separately from different popu-
lations (case-control sampling). The observed snow cover presences are
randomly sampled from stationswhich observe the snow cover, where-
as the background data in the training set are sampled from all stations
no matter they record the snow cover or not. The sampling method is
applied to the selection of the validation set, too.

Although the GSOD dataset is contributed by N29,000 stations glob-
ally (see Fig. 3), only around 600–1000 stations observe the snow cover
occurrence per day in winter season, and even less in autumn or spring.
Most of these observed presences are dispersedly located in the middle
latitude region of the Northern Hemisphere. For example, as shown in
Fig. 4, only 926 stations recorded the snow cover presence in Jan. 6th
2006. In the model training process, we found that model training
using samples from a single date was usually unstable. This phenome-
non exists constantly nomatter howwe randomly separate the training
set and validation set. One might account for this problem is that these
observed presences from a single date are not adequate to fully cover
the connections between BTs and the probabilities of snow cover occur-
rence. To address these issues, we implemented different model train-
ing configurations by using various sizes of the training set and the
validation set sampled from one day, one week, half a months and one
month (see more details in Section 6). Besides, the ratio of observed
presence samples to background data samples is another factor affect-
ing the model stability. In this study, we set the ratio of observed pres-
ence samples to background data samples as 1:3 considering that the
snow cover prevalence in the globe is approximately 30% on average.

5.3. Configuration of the BP-neural network

As aforementioned, many binary classifiers are compatible to the
PBL model and train the model to conditional probability of snow
cover occurrence. In this study we used a backpropagation (BP) neural
network to estimate pobs = P(obssc = 1|BTs, η = 1) from the observed
presence and background samples. The log-sigmoid function is selected
as the transfer function for the model so that the values of estimated
probabilities fall within [0, 1]. Mean square errors (MSEs) are used as
the objective function in the training process.

In themodel training phrase, we randomly selected 25% of the train-
ing samples as the test set. The BP-network was run 10 times with dif-
ferent initialization using the rest 75% as the training samples. The
average of every sample set over 10 predictions is ranked in descending
order. Samples that rank at top percentile, for example 50th percentile,
are regarded asmembers of prototypical presence sample setO, andwill
be used to estimate the constant c using Eq. (6). After all these steps, the
probability of snow cover occurrence psc can be estimated using Eq. (7).

6. Results and discussions

6.1. Probability estimation of snow cover occurrence

The PBL snow cover estimationmodel described in section 4was im-
plemented and applied to SSM/I BT data and GSOD (and CMSO) obser-
vations from 1987 to 2010. Fig. 5 presents one selected example
illustrating the estimated probability of snow cover occurrence on Jan.
6th 2006. The estimated probability is overlapped with ground in situ
observations from the GOSD dataset (only presence data) in the globe
and the CMSO dataset (both presence and absence data) in China.
Note that there are some regions with relatively high estimated proba-
bility but no snow cover being recorded in the GSOD dataset. These re-
gions probably correspond to those background data which are actually
have snow cover but are not being observed: obssc=0∩sc=1(the pur-
ple part in Fig. 2).

During the training process, difference sizes of training sample are
found to affect the performance of the BP neural networkmodel in esti-
mating the probability of observed snow cover occurrence. We take the
date of Jan. 6th 2006 as an example by training the model using various
populations of training set: #1 data only sampled from Jan. 6th 2006, #2
data sampled from a week period (Jan. 1st–7th 2006), #3 data sampled
from half a month (Jan. 1st–15th 2006), #4 data sampled from the
whole month (Jan. 1st–31st 2006). Each model is randomly initialized



Fig. 8. Probability segmentation using the selected threshold (0.480) that maximize the Fpb on Jan. 6th, 2006, overlapped with ground in situ observations.
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and trained 10 times. The average of 10 mean square errors (MSE) and
the variance of these 10MSEs (Var) are estimated to quantify themodel
performance. Table 3 summarizes the sampling information and their
performance based on the MSE and Var, which are estimated using
the training dataset and the validation dataset. From the first row of
the table, it shows that if we train the model using 500 observed pres-
ences and 1500 background data sampled only from one day, the aver-
age and the variance of MSEs are relatively higher in both training
(MSE = 0.267, Var = 0.039) and test (MSE = 0.291, Var = 0.042)
phases. One possible reason is that 500 observed presences are not ad-
equate to express the relations between SSM/I BTs and the snow cover
occurrence probability. By increasing the population of observed pres-
ences and background data, this problem could probably be resolved.
Unfortunately, observations of snow cover occurrence in a single date
is usually b1000 in the winter season and even less in non-winter
dates. So we carry out the training phase using observed presences
and background data sampled from different length of periods: one
week, half a month and a whole month. By training the model with
data sampled from a period, uncertainty caused by extreme weather
or systematic deviation can be reduced accessorily. As we increase the
sample population in the training dataset, both MSE and Var decrease
in training and validating phases.

Considering the balance between model performance and training
efficiency, a strategy is applied in which we train a monthly model
using the training dataset sampled from the whole month, and then
use this model to predict the probability of snow cover occurrence on
each date of the corresponding month. For example, in January 2006,
we trained a model using the dataset sampled from the whole month
of January and then predicted the probability of snow cover occurrence
using the trainedmodel. Such strategy is applied to everymonth as long
as the SSM/I and ground in situ observations are available.

The stability of the predicted probability in terms of spatial distribu-
tion is another concern in testing the applicability of themodel for long-
term snow cover estimation. We trained 10 different models using the



Table 4
Model stability over 10-time snow cover predictions and segmentations on Jan. 6th, 2006.

Segmentation Snow free (Pixel) Snow cover (Pixel) Bias to overlapped region (Pixel, %) Bias to quantitative average (Pixel, %) Bias to spatial average (Pixel, %)

#1 108,460 48,879 4,958 (11.29%) 507 (1.05%) 588 (1.22%)
#2 108,161 49,178 5,257 (11.97%) 806 (1.67%) 887 (1.84%)
#3 108,835 48,504 4,583 (10.43%) 132 (0.27%) 213 (0.44%)
#4 109,207 48,132 4,211(9.59%) −240 (−0.50%) −159 (−0.33%)
#5 107,441 49,898 5,977 (13.61%) 1,526 (3.15%) 1,607 (3.33%)
#6 110,874 46,465 2,544 (5.79%) −1,907 (−3.94%) −1,826 (−3.78%)
#7 107,307 50,032 6,111 (13.91%) 1,660 (3.43%) 1,741 (3.61%)
#8 108,713 48,626 4,705 (10.71%) 254 (0.53%) 335 (0.69%)
#9 109,849 47,490 3,569 (8.13%) −882 (−1.82%) −801 (−1.66%)
#10 110,818 46,521 2,600 (5.92%) −1,851 (−3.83%) −1,770 (−3.67%)

Overlapped region – 43,921 – – –
Quantitative average – 48,372 – – –

Spatial average – 48,291 – – –

Fig. 9. Comparison of an individual prediction of snow cover with the spatial average of 10-time prediction.
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Table 5
Comparison of the predicted snow coverwith the observed snow cover presence from the
GSOD dataset on Jan. 6th, 2006.

GSOD dataset (global)

Observed snow cover (300) Observed snow depth
N30 mm (200)

Predicted snow cover 263 186
(Percentage) 87.67% 93.00%
Predicted snow-free 37 14
(Percentage) 12.33% 7.00%

Omission error = 0.1233 (0.070 regarding to snow depth N30 mm).

Table 6
Comparison of predicted snowcoverwith observations from theCMSO dataset on Jan. 6th,
2006.

CMSO dataset (China region)

Snow cover
(150)

Snow free
(150)

Snow depth
N30 mm (100)

Snow free (100)

Predicted snow cover 122 24 92 11
(Percentage) 81.33% 16.00% 92.00% 11.00%
Predicted snow free 28 126 8 89
(Percentage) 18.67% 84.00% 8.00% 89.00%

Overall accuracy= 0.8267 (0.9050 when the snow depth N30 mm); Cohen's Kappa coef-
ficient = 0.6533 (0.8100 when the snow depth N30 mm).
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training sets randomly sampled from January 2006 and predicted 10
probability results of Jan. 6th 2006. After that, the standard deviation
(STD) at each SSM/I grid was estimated according to these 10 predicted
probabilities. The spatial distribution of STD is illustrated in Fig. 6, over-
lapped with ground in situ observations from the GSOD dataset and the
CMSO dataset. Additionally, the histogram of STD is visualized in the
lower left corner of Fig. 6, sharing the same color ramp. Colder colors in-
dicate lower values of STDs in the specific SSM/I grid and hotter colors
refer to higher ones. The estimated STD on Jan. 6th 2006 across the
globe ranges from 0 to 0.15. Higher STDs are mainly located in regions
with high probability of snow cover occurrence but ground in situ obser-
vations are insufficient (e.g., northern Siberia region and northern Alas-
ka) or observed snow depths are relatively thinner (e.g., eastern Russia
and Finland). By examining the distribution pattern of the STD histo-
gram in Fig. 6, we can find that most STDs are smaller than 0.04 (the
blue color), of which a majority is very close to 0, meaning that the var-
iation caused by of different training sets and model initializations are
relatively small. Moreover, the small number of higher STD (ranging
from 0.1 to 0.15) on areas of high predicted probabilities are not sup-
posed to greatly alter thefinal binary segmentation because the predict-
ed probabilities in these regions are far beyond the segmentation
threshold.

6.2. Snow cover segmentation

Following the algorithmdescribed in Section 4.2, the predictedprob-
ability of snow cover occurrence needs to be segmented in to binary
classes: snow cover and snow-free. The objective of segmentation is to
maximize the Fpb defined in Eq. (10) based on presence-background
data. Ground in situ observations, which are independent from the
training set, are used to enumerate the values of Fpb by choosing the seg-
mentation thresholds ranging from 0 to 1 stepped by an increment of
0.01. Then the threshold that yields the maximum of Fpb is used for
Fig. 10. Monthly omission errors of snow cover estimation during 2006, compared with
the GSOD dataset globally.
the probability segmentation. Usually, the threshold determined by ob-
servations on the corresponding day wound be ideal for achieving the
best accuracy. However, we found that daily observations on the north
part of Northern America and Eurasia are relatively rare, leading to un-
stable segmentation results in these regions. Thus ground observations
before and after the specific date are used to select the segmentation
threshold. We tried different time periods of 7 days, 15 days, and a
month, and found that the thresholds calibrated with 7-day observa-
tions can achieve stable performance over tundra areas in a relatively
time-saving manner. As to the estimated probability on Jan. 6th, 2006,
ground in situ observations during Jan. 4th–9th, 2006, which are inde-
pendent from the training set, are used to select the segmentation
threshold for Jan. 6th, 2006. Fig. 7 shows the enumeration of Fpb when
choosing different thresholds to segment the predicted probability on
Jan. 6th 2006.Whenwe selected the value of 0.480 as the segmentation
threshold, Fpb reaches its maximum at 0.3321. Thus the value of 0.480 is
used as the optimum threshold for the segmentation on this date. The
result of probability segmentation on Jan. 6th, 2006 is shown in Fig. 8,
overlapped with ground observations from the GOSD dataset and the
CMSO dataset.

In order to ensure that the proposed model is applicable to long-
term snow cover predictions, the stability of the segmentation results
needs to be tested. Similar to the stability test in the probability predic-
tion phase, we trained ten models separately to predicted ten patterns
of probability using different training datasets sampled from the same
month (January 2006). Then the segmentation phase was carried out
tomaximize each predicted probability pattern usingdifferent test sam-
ple sets that are independent from the training sample sets. After that,
four statistical metrics including snow cover extent, snow cover over-
lapped region, quantitative average and spatial average of ten segmen-
tation results were analyzed. The snow cover overlapped region refers
to those pixels where all ten segmentations are classified as snow
cover. Quantitative average is the algebraic average of the number of
pixels to be classified as snow cover among ten segmentations. Spatial
average refers to pixels where more than half segmentations are classi-
fied as snow cover. Details of ten segmentation results and their biases
to the overlapped region, quantitative average and spatial average are
summarized in Table 4.

The snow cover extent of ten segmentation results ranges from
46,465 pixels (25 × 25 km grid cell) to 50,032 pixels. The quantitative
average (Qua_ave) of ten segmentations is 48,372 pixels,which is calcu-
lated directly without consideration for the spatial information. The o-
verlapped region (Ove_region) of ten segmentations contains
43,921 pixels. These regions are expected to have very high confidence
to be snow cover since all tenmodels classify these pixels as snow cover
congruously. The spatial average (Spa_ave) of ten segmentations con-
tains 48,291 pixels. More than half of ten models classify these pixels
as snow cover and thus these regions are expected to be snow cover av-
eragely. The biases of ten segmentations to Ove_region, Qua_ave and
Spa_ave are illustrated in last three columns of Table 4. The bias to
Ove_region ranges from 5.79% to 13.91%, which means that we can, in
most cases, predict N85% of the snow cover presence with a very high
degree of confidence. The bias to Qua_ave and Spa_ave are roughly



Fig. 11.Monthly overall accuracy and Cohen's kappa coefficient of snow cover estimation in 2006, compared with the CSOD dataset in the China region.

Table 7
Evaluation of the model performance in snow-melting areas during Jan. 2006.

GSOD dataset

Observed snow
cover (200)

Observed snow depth
N30 mm (100)

Predicted snow cover 172 87
(Percentage) 86.00% 87.00%
Predicted snow-free 28 13
(Percentage) 14.00% 13.00%

Omission error = 0.140 (0130 regarding to snow depth N30 mm).
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range from 0 to ±4%, which shows the proposed model is stable when
applied to snow cover classification.

Fig. 9 illustrates the spatial overlap pattern of #1 segmentation result
and the spatial pattern of Spa_ave. Areas covered by the yellow color
and light the blue color are predicted to be snow-free and snow cover
regions both in #1 segmentation result and the Spa_ave pattern, respec-
tively. Area covered by the dark blue color and the red color are classifi-
cation disagreements. The dark blue color area is the predicted snow
cover included in the#1 segmentation result but not in the Spa_ave pat-
tern, whereas the red color area is the contrary situation, predicted
snow cover included in Spa_ave pattern but not in the #1 segmentation
result. According to Fig. 9, the extent of areas covered by the dark blue
color and the red color is relatively small comparing to the extent of pre-
dicted snow cover in common. Most of these inconsistent pixels are
mainly scattered around the fringe of large snow cover regions, which,
from the spatial perspective, confirms the stability of the proposed
model in global snow cover classification.

6.3. Model validation and relative comparisons

6.3.1. Validation using ground in situ observations
The estimated snow cover results are compared with ground in situ

observations which are sampled from the GSOD dataset but indepen-
dent from the training set used for the model training phase and the
test dataset for binary segmentation phase. Since the GSOD dataset
only contains observed presence of snow cover, we simply compare
the observed presence with the predicted snow cover. 300 observed
presences are randomly sampled from the GSOD dataset on Jan. 6th,
2006, and the observed presences are compared to pixels in which
ground stations are located. Table 5 summarizes the comparison be-
tween the sampled observed presences and the predicted snow cover
results. 247 among 300 validating samples are correctly classified as
snow cover, accounting for 82.33% of the validating set. The omission
error is 0.177. As we mentioned in the previous section, the pixel-wise
comparison between SSM/I grids and station points might introduce
uncertainties because an assumption is made that the point observation
is equivalent to the whole SSM/I grid. Thus another comparison with
station observations is carried that we only select those observed
snow depths deeper than 30 mm. 200 observed snow cover records
with snow depth N30 mm were randomly sampled from the GSOD
dataset from the same date and compared with the model classifica-
tions. The omission error significantly decreases to 0.105 (highlight in
Table 5), indicating that, as to those areas cover by snowpack, our
snow cover estimation results have a promising agreementwith ground
in situ observations.

The monthly omission errors in 2006 are shown in Fig. 10 to exam-
ine the agreement between themodel results and the ground in situ ob-
servations during the whole year. Bars in darker color refer to the
comparison that only considers observations with snow depth
N30 mm. We can see that the omission errors of 12 months are around
0.14 and decrease to around 0.10 regarding to those observations that
are cover by snowpack thinner than 30 mm. There is no large variation
of omission error showing in the figure, which implies that the pro-
posed method is quite stable when applying to different seasons.

For the China region, the estimation results are compared with the
CMSO dataset using both presence and absence observations. The com-
plete binary confusion matrix is created and the overall accuracy and
Cohen's kappa coefficient are estimated to quantify the agreement be-
tween the ground in situ observations and themodel results. 300 obser-
vation records (150 presences and 150 absences) sampling on Jan. 6th,
2006 are used in the validation process. Similar to the comparison with
GSODdataset, we accessorily carry out another comparison byusing ob-
servation records with snow depth N30 mm (100 observation records).
Table 6 summarizes the details of comparisons. The commission and
omission errors are 0.160 and 0.193, respectively in the former compar-
ison (first two columns in Table 6). As to samples with snow depth
N30 mm (last two columns in Table 6), the omission error is much
smaller (0.090), which indicates the proposed model performs better
regarding to areas that are covered by thicker snowpack. The overall ac-
curacy is 0.823 and increases to 0.880 when the snow depth is deeper
than 30 mm. The Cohen's kappa coefficients are 0.647 and 0.760,



Fig. 12.Yearly omission error (against theGSODdataset), yearly overall accuracy andCohen's Kappa coefficient (against theCMSOdataset) of the selected year1991, 1995, 1999, 2003and2007.
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respectively, showing substantial agreements between our classifica-
tion results and ground in situ observations in the China region.

The monthly overall accuracy and Cohen's kappa coefficient in 2006
are presented in Fig. 11. Bars and polylines in darker colors refer to the
overall accuracy and Cohen's kappa coefficient in a scenario that only
considers observations with snow depth N30 mm. The overall accura-
cies (left vertical axis) of 12 months range from 0.815 to 0.857 and in-
crease to around 0.89 when only consider observations with snow
Fig. 13. Comparison of the snow cover area between MODIS daily snow cover product (MOD
depth N30 mm. The Cohen's kappa coefficients (right vertical axis) of
12 months are around 0.65 and increase to around 0.80 for deeper
snow cover with snow depth deeper than 30 mm. Similar to the com-
parison with the GSOD dataset, the overall accuracy and Cohen's
kappa coefficient show no significant variation among 12 months in
the China region.

Since the presence of liquidwater within the snowpack significantly
decreases microwave radiation scattering, traditional methods wound
10C1) and the proposed model prediction under cloud-free condition on Jan. 6th, 2006.



Table 8
Pixel-to-pixel comparison (1000 random samples on each label) between MODIS daily snow cover product (MOD10C1) and the proposed model prediction under cloud-free condition.

MOD10C1 MOD10C1 resampled

Snow cover Other region Snow cover Other region

Predicted snow cover (1000) 868 132 906 93
(Percentage) 86.80% 13.2% 90.60% 9.30%

Other region (1000) 153 847 114 886
(Percentage) 15.30% 84.70% 11.40% 88.6%

Overall accuracy = 0.8575 (0.8964 regarding to resampled MOD10C1); Cohen's Kappa coefficient = 0.7150 (0.7929 regarding to resampled MOD10C1).
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misclassify themelting snow as snow free. Thus it is necessary to exam-
ine the model performance across the melting snow areas. Previous
studies have shown that the polarization difference of BT at lower fre-
quencies exhibits a clear discrimination between snow- melting and
snow-free areas. In this study we include the polarization difference of
BT at 19-GHz and 37-GHz (see Table 1) in the model training and
predicting processes. Thus the melting snow should be able to be iden-
tified through the trained model. Considering there are no available
ground observations of melting snow, we use observations in the
Fig. 14. Comparison between the NOAA daily IMS dataset and the proposed mod
GSOD dataset that meets the condition of “snow depth N0 and mean
temperature N0” to approximate “melting snow” observations. 200
“melting snow” observations are randomly selected from the GSOD
dataset during Jan. 2006, and compare with the model estimations on
the corresponding dates. Table 7 present the details of the comparison
result. The omission error of the model estimation in melting snow
area is 0.140 and slightly better (0.130) in areas with deeper snow
cover. The omission errors of melting snow are very close to the perfor-
mance of overall snow cover evaluation presented in Table 5, which
el prediction on Jan. 6th, 2006, overlapped with ground in situ observations.



Table 9
Comparison of predicted snow cover and the NOAA daily IMS dataset on Jan. 6th, 2006, using the GSOD and CMSO datasets as references.

NOAA daily ISM dataset Model estimation

Snow cover Snow free Predicted snow cover Predicted snow free

GSOD dataset (global)
Snow cover (300)

269 31 265 35

(Percentage) 89.67% 10.33% 88.33% 11.67%
CMSO dataset (China)
Snow cover (150)

133 17 129 21

(Percentage) 88.67% 11.33% 86.00% 14.00%
CMSO dataset (China)

Snow free (150)
19 131 24 126

(Percentage) 12.67% 87.33% 13.33% 86.67%

Omission error of the NOAA daily ISM dataset is 0.1033, and 0.1167 for our model estimation; Overall accuracy of the NOAA daily ISM dataset is 0.8800, and 0.8500 for our model estima-
tion; Cohen's kappa coefficient of the NOAA daily ISM dataset is 0.7600, and 0.7000 for our model estimation.
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means the proposed method can successfully identify snow cover over
melting snow areas.

In order to examine the applicability and the performance of the
proposed method in a long term period, five years in the study period
Fig. 15. Comparison between the AMSR-E daily SWE product (AE_DySno) and the proposed
highlighted with translucent-red ellipses indicate the overestimation of the AE_DySno dataset
(1991, 1995, 1999, 2003, 2007) are selected to evaluate the omission
error against the GSOD dataset in the globe, and the overall accuracy
and Cohen's kappa coefficient against the COSD dataset in the China re-
gion. Fig. 12 presents the assessment statistics of the selected years.
model prediction on Jan. 6th, 2006, overlapped with ground in situ observations. Areas
.



Table 10
Comparison of the predicted snow cover and the AE-DySno SWE dataset on Jan. 6th, 2006,
using the CMSO dataset as references.

CMSO dataset (China region)

Snow cover (150) Snow free (150)

Predicted snow cover 125 26
(Percentage) 83.33% 17.33%

Predicted snow free 25 124
(Percentage) 16.67% 82.67%

AE_DySno SWE N 0 129 41
(Percentage) 86.00% 27.33%

AE_DySno SWE = 0 21 109
(Percentage) 14.00% 72.67%

Overall accuracy of the model estimation = 0.830, Overall accuracy of AE_DySno =
0.7933; Cohen's Kappa coefficient of themodel estimation= 0.660, Cohen's Kappa coeffi-
cient of AE_DySno = 0.5867.

243X. Xu et al. / Remote Sensing of Environment 182 (2016) 227–251
Overall, these statistical results are quite stable, and keep consistent
with that of 2006. The omission errors evaluated against the GSOD
dataset range from 0.17 to 0.18, and decrease to around 0.11 for station
observations with snow depth N30 mm. The overall accuracies and
Cohen's kappa coefficients evaluated against the COSD dataset in the
China region are stable at 0.82 and 0.65 respectively, and increase to
0.88 and 0.76 for station observations with snow depth N30 mm.
Since the proposed PBL-based model adaptively calibrates daily snow
cover using the corresponding daily ground observations, the proposed
method shows to be applicable for a long-term period considering the
promising performance in 2006 and the stable statistics of assessment
in other six years.
Fig. 16. Comparison of our predicted snow cover pattern with the AE_DySno SWE product a
Hemisphere (Jun. 9th, 2006 and Aug. 19th, 2006).
6.3.2. Comparison with MODIS snow cover product (MOD10C1) in the
Northern Hemisphere

The estimation results are compared with the extensively-used
Moderate Resolution Imaging Spectroradiometer (MODIS) snow
cover product (MOD10C1). The MOD10C1 product is a daily global
climate modeling grid (0.05°) dataset based on the vis‐IR spectrum
reflectance retrievals, more specifically, based on the Normalized
Difference Snow Index (NDSI) algorithm (Hall, Salomonson, &
Riggs, 2006). However, optical sensors cannot observe the earth's
surface when clouds or darkness are present. Thus only in regions
where are cloud-free and illuminated by sunlight, the MOD10C1
dataset is capable to distinguish whether the earth surface is covered
by snowpack or not. So the comparison is only focused on areas
where snow cover in the MOD10C1 dataset is dominant (100%). By
using the cloud cover and seasonal darkness area in the MOD10C1
dataset, the classification results and the MOD10C1 snow cover re-
gion are masked and relabeled into four categories: “snow cover”,
“cloud cover”, “snow free” and “snow cover + cloud cover”. The
“snow cover + cloud cover” category only exists in our model esti-
mations (right column), indicating areas that are predicted to be
snow cover but are covered by cloud. Fig. 13 shows the patterns of
the MOD10C1 snow cover (left) and the model classification results
(right) in two selected regions (around 60°E-50°N and 90°W-50°N)
on Jan. 6th 2006. Despite differences in spatial resolutions, the pat-
tern of snow cover in the model classification result (blue color
area) is highly comparable to that of the MOD10C1 dataset. A pixel-
to-pixel comparison is performed on these reclassified labels to ex-
amine the agreement of the snow cover pattern under cloud-free
areas. We merged the “cloud cover”, “snow free” and “snow
nd the MOD10C1 dataset in the Chile-Argentina area in winter season in the Southern



Table 11
Comparison of the estimated snow cover with the MOD10C1 snow cover dataset and the
AE_DySno SWE dataset on Jun. 9th and Aug. 19th, 2006, using MOD10C1 as reference (50
samples each day).

AMSR-E Model estimation

SWE N 0 SWE = 0 Snow cover Snow free

MOD10C1 snow cover (Jun 9th) 41 9 42 8
(Percentage) 82.00% 18% 84% 16%

MOD10C1 snow cover (Aug 19th) 34 16 40 10
(Percentage) 68% 32% 80% 20%
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cover+ cloud cover” arears into one label of “other region”, and then
randomly generated 1000 points on each label to examine the agree-
ment between the two classified results. To eliminate the influences
of spatial resolution between two compared datasets, another com-
parison is carried out in which the MOD10C1 snow cover dataset is
resampled into the same resolution (25 × 25 km). Table 8 summa-
rizes the details of two comparisons between these two classified
results.

The overall accuracy is 85.75% in the original comparison and
reaches 89.64% when the MOD10C1dataset is resampled into coarser
resolution. The Cohen's kappa coefficients are 0.7150 and 0.7929, re-
spectively. Both the overall accuracy and Cohen's kappa coefficient indi-
cate that themodel classification agreeswellwith theMOD10C1 dataset
in cloud-free areas.

6.3.3. Comparison with NOAA IMS Dataset in the Northern Hemisphere
The estimation result based on the proposedmethod is compared to

the NOAA daily Interactive Multisensor Snow and Ice Mapping System
(IMS) dataset created by the National Ice Center (National Ice Center,
2008). This dataset provides snow and ice cover maps for the Northern
Hemisphere from February 1997 to present. It is derived from a variety
of data products including satellite imagery and in situ data, and gridded
in three different spatial resolutions: 1 km, 4 km, and 24 km. Since the
spatial resolution of our model estimation is 25 km, the NOAA daily
IMS dataset of 24 km is used in this comparison. Fig. 14 presents the
snow cover pattern of the NOAA daily IMS dataset (left) and our
model estimation (right) in the Northern Hemisphere on Jan. 6th
2006, overlapped with ground in situ observations from the GSOD and
CMSO datasets. Overall the two snow cover patterns are quite similar
at a continental scale, especially in Eurasia. Somehow the proposed
method seems to estimate relatively generate less snow cover extent
along the boundary of Canada and the USA (see the button row of Fig.
14) as compared to the NOAA daily IMS dataset. In order to quantita-
tively examine the agreement between these two snow cover patterns
against ground observations, we selected 1000 observations from the
GOSD dataset and 300 (150 snow cover and 150 snow free) from the
CMSO dataset to establish the confusion matrix and evaluate the omis-
sion error, the overall accuracy and Cohen's kappa coefficient. Table 9
summarizes the details of the quantitative comparisons. The omission
errors globally evaluated against the GSOD dataset are 0.1033 for the
NOAA daily IMS dataset and 0.1167 for the model estimation, respec-
tively. The overall accuracy and Cohen's kappa coefficient of the NOAA
daily IMS dataset in China are slightly better than these of ourmodel es-
timation, too (overall accuracy: 0.8800 vs 0.8500, Cohen's kappa coeffi-
cient: 0.7600 vs 0.7000). All three assessment statistics indicate
promising accuracy of these two snow cover patterns. Even though
the NOAA daily IMS dataset is derived from various satellite imageries
and ground in situ data, the proposed method can still achieve good
agreement with the NOAA daily IMS dataset.

6.3.4. Comparison with AMSR-E daily snow product in the Northern
Hemisphere

The estimation results based on the proposed method are further
compared to another snow cover dataset: the AMSR-E daily snow
product (AE_DySno). The AE_DySno dataset is a global estimation of
snow cover and SWE using multi-frequency passive microwave BT
data acquired from the Advanced Microwave Scanning Radiometer-
Earth Observing System (AMSR-E) (Tedesco et al., 2004). Fig. 15
shows the AE_DySno SWE pattern (left) and our model classification
(right) on Jan. 6th, 2006, overlapped with ground in situ observations.
Colder colors indicate higher SWE estimation in the AE_DySno dataset.
If consider snow cover extent as the areas where SWE N 0, we find
that the snow cover extent indicated by AE_DySno is obviously larger
than that of ourmodel classification results.We compared these two es-
timations in the China region where both observed presence and ab-
sence data are available to figure out whether the PBL-based results
are underestimated or not. In regions that are observed to be snow-
free (covered by small blue dots and highlighted with translucent-red
ellipses), the AE_DySno dataset is found to have SWE N 0, despite SWE
in these regions are relatively small. But our model classification
shows better agreement with the ground in situ observations.

In order to quantitatively investigate this phenomenon, 300 obser-
vation records (150 presences and 150 absences) on Jan. 6th, 2006 are
from the GSOD dataset to quantify the agreement of two datasets to
the ground in situ observations in the China region. Table 10 summa-
rizes the details of the comparison. 41 of 150 snow-free samples corre-
spond to the pixels where SWE N 0 in AE_DySno dataset. Although the
omission error of the AE_DySno (0.140) is slightly lower than that of
our model estimation results (0.1667), the commission error of the
AE_DySno dataset is much higher (0.2733 comparing to 0.1773). The
reason is that the AE_DySno dataset seems to overestimate the SWE
on some snow-free regions in China (highlighted with translucent-red
ellipses in Fig. 15). As a result, relatively more snow-free ground obser-
vations are misclassified as “snow cover”, contributing to the higher
commission error. From Table 10 we can see that both the overall accu-
racy and Cohen's kappa coefficient of ourmodel estimation are superior
to the AE_DySno. All these quantitative analyses confirm the indication
of Fig. 15 that ourmodel estimation agrees betterwith the ground in situ
observations in regions with thinner snow cover.

6.3.5. Comparisons in the Southern Hemisphere
Compared to theNorthernHemisphere, the snow cover extent in the

Southern Hemisphere is rather small even though in the winter season
(from June to September). Surface snows are mainly located along the
boundary between Chile and Argentina (Andes mountain range) and
on the south part of the Patagonia Plateau. In these regions there are
no available ground observations in the GSOD dataset. Thus in the
SouthHemispherewe verify the proposedmethod by comparing the es-
timated snow cover patterns with the MOD10C1 and AE_DySno
datasets. TheMOD10C1 snow cover under clear-sky conditions are con-
sidered to be the reference, and the SWE patterns of AE_DySno are used
to relatively validate the estimated snow cover patternwhere the cloud
cover is present.

It is not easy to find dates when all three sensors simultaneously
cover the southern Andes mountain range and few cloud cover is pres-
ent. Fig. 16 presents two groups of comparative snow cover patterns on
Jun. 9th (above row of Fig. 16) and Aug. 19th (bottom row Fig. 16) of
2006 when all three sensors covered the southern Andes mountain
range and as few cloud cover as possible. We can observe from Fig. 16
that, in general, the snow cover patterns of the AE_DySno dataset, the
MOD10C1 dataset and our model estimation are quite similar. Com-
pared to the optical-based MOD10C1 dataset, both BT-based retrieval
methods are fail to identify snow shatters on the seashore of Chile. On
both Jun. 9th and Aug. 19th, the surface snows are mainly located
along the boundary of Chile and Argentina and in the Patagonia Plateau.
On date Aug19th, the AE_DySno daily SWE dataset seems to underesti-
mate the snow cover areas on the Patagonia Plateau (highlighted by a
translucent-red ellipse in Fig. 14), while our estimated snow cover pat-
tern is matched well with the MOD10C1 snow cover pattern in cloud-
free areas.
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To quantitatively illustrate the agreements among the snow
cover patterns of the MOD10C1 dataset, the AE_DySno dataset and
the model estimation, we randomly select 50 samples each day
from the snow cover region in the MOD10C1 dataset as references,
and examine whether the selected samples are classified as snow
cover (or SWE N 0) in our estimated results and the AE_DySno
dataset. In this way, we can approximately derive the commission
errors of the estimated snow cover pattern and compare it with
that of the AE_DySno dataset. The details of comparison are shown
in Table 11. On Jun. 9th, 41 of 50 (82%) samples are labeled as
SWE N 0 in the AE_DySno dataset, while our model estimation is
slightly better, with 42 (84%) are labeled as snow cover. On Aug.
19th, only 34 (68%) samples are found to be SWE N 0 in the AE_DySno
dataset due to underestimation on the Patagonia Plateau. In compar-
ison, the proposed estimation model is more stable, by which 40 of
50 (80%) samples are classified as snow cover.

6.4. Limitations and future studies

Traditional microwave BT-based methods usually do not perform
very well in identifying snow cover on ice sheet and glacier regions
such as Greenland and Antarctica. In the AMSR-E daily SWE dataset
(AE_DySno), almost all of Greenland and Antarctica are labeled as
“ice sheet” instead of “snow cover”. However, in the NOAA Interac-
tive Snow Cover Map (NOAA IMS), the Greenland is labeled as
“snow cover”. According to the estimation from the proposed meth-
od, snow cover probabilities in the Greenland and Antarctica are
rather small. Since we do not have adequate ground observation in
these two areas, we excluded them from our model estimation, and
labeled them as “not estimated” in the final results. In future work,
more efforts will be applied to study the snow cover identification
on the ice floors.

Accurate long-term series of daily snow cover datasets are valuable
for modeling global climate change and test climate model simulations.
Following this study, it would be interesting to apply the proposed
model to the Scanning Multichannel Microwave Radiometer (SMMR)
BT data ad extend the time series of the products back to 1978, since
the frequencies of the SMMR BT data are very similar to that of the
SSM/I and the daily ground observations are available during the same
time period.

Although historical snow cover extents are estimated using the pro-
posed method, it is difficult to derive the time-series trend of snow
cover extents during long-term period based only on these daily snow
cover estimations, because the tiles of the SSM/I sensors are only
cover parts of the globe every day and the footprint keeps changing con-
tinuously. In future studies, we may need to integrate the daily snow
cover estimations into 5-day, weekly, or 8-day compositions of snow
cover extents after extensive validations of daily results against ground
in situ observations. These compositions, which can fully cover the
whole globe in one scene, will be useful to derive the historical trend
of the snow cover extent during the past 30 years for further global cli-
mate applications.

7. Conclusion

Current microwave-based methods of global snow cover estima-
tion are found to be spatial and temporal bias, because the heteroge-
neity of snowpack and land cover are not fully considered in these
stand-alone algorithms. Regression coefficients in such empirical al-
gorithms are usually calibrated by insufficient ground observations
of snow information. Thus the accuracy is greatly dependent on
local conditions and scene characteristics, limiting the model appli-
cability for deriving promising snow cover products in a long-term
period.

This study presents an approach to determine global snow cover
extent by combining space-borne microwave measurement and
daily ground in situ snow cover observations. The novelty of the pro-
posed method is that the adopted PBL algorithm can be trained and
used to identify snow cover only using observed snow cover pres-
ence records, considering that consistent station observations of
snow-free records on a global scale are usually unavailable. Because
the proposed model utilizes ground observations and microwave
measurements on a daily basis, it is temporally and spatially dynamic
such that estimation errors are independent of local conditions and
scene characteristics.

The model stability in both the training phase and the segmenta-
tion phase is tested by examining the variation across 10-time inde-
pendent model training and segmentation. The standard deviation of
10-time estimated probabilities across the globe ranges from 0 to
0.15, of which a majority is very close to 0. The bias of the ten-time
segmentation results to the quantitative-average and spatial-aver-
age roughly range from 0 to ±7%. The results of these tests confirm
the stability of the proposed model in global snow cover estimation,
both in spatial and quantitative perspectives. Areas with higher un-
certainties are mainly located in the regions that have fewer ground
in situ observations or are scattered around the fringe of large snow
covered regions.

The proposed model is implemented and applied to the estimation
of global snow cover from 1987 to 2010, using BT measurements from
SSM/I instrument and daily ground snow cover observations from the
GSOD and CMSO datasets. The estimation results are validated against
ground in situ observations and compared with the MODIS daily snow
cover product (MOD10C1), the NOAA IMS dataset and AMSR-E daily
SWE dataset (AE_DySno). The global omission error of the snow cover
estimation on Jan. 6th, 2006 is 0.1233. The overall accuracy and Cohen's
kappa coefficient on the same date in the China region are 0.8265 and
0.6533, respectively. If we only consider scenarios that snow depth
N30 mm, the global omission reduces to 0.07, and the overall accuracy
and kappa increase to 0.905 and 0.810, respectively. The above statistics
are also evaluated in monthly average during 2006. The monthly omis-
sion error of the snow cover estimation is around 0.14 and reduces to
0.10 when only considering observations with snow depth N30 mm.
The monthly overall accuracy and Cohen's kappa coefficient in the
China region are around 0.83 and 0.65, and increase to 0.89 and 0.80
when only considering observations with snow depth N30mm, respec-
tively. All these statistics showno significant variation over12months in
2006, and the same as that of the other five selected years (1991, 1995,
1999, 2003, and 2007), indicating that the proposed method not only
achieves promising accuracies, but also shows stable when applying to
different seasons and years. The comparison between the model esti-
mation and the MOD10C1 products shows good agreement under
cloud-free conditions. The comparison between the model estimation
against the NOAA IMS dataset also shows promising agreement in the
Northern Hemisphere. Another comparison of our model results with
the AE_DySno dataset demonstrates the benefits of the proposedmeth-
od regarding to the overestimation problem in regions with thinner
snow cover.

Similar to traditional microwave BT-based methods, the pro-
posed method does not perform very well in identifying snow
cover in regions with ice sheets and glaciers such as Greenland and
Antarctica. These two areas are excluded from our model estimation,
and are labeled as “not estimated” in the final results. In the future
work, more efforts need to be made to identify snow cover on the
ice floors.
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Fig. A1. Estimated snow cover pattern on Jan. 10th, 2006.

Appendix A. Additional estimated snow cover patterns in Jan. 2006
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Fig. A2. Estimated snow cover pattern on Jan. 15th, 2006.
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Fig. A3. Estimated snow cover pattern on Jan. 20th, 2006.
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Fig. A4. Estimated snow cover pattern on Jan. 25th, 2006.
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Fig. A5. Estimated snow cover pattern on Jan. 30th, 2006.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2016.05.010.
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